Cooperative signaling among bacterial chemoreceptors.
نویسندگان
چکیده
Four chemoreceptors in Escherichia coli mediate responses to chemicals in the environment. The receptors self-associate and localize to the cell poles. This aggregation implies that interactions among receptors are important parameters of signal processing during chemotaxis. We examined this phenomenon using a receptor-coupled in vitro assay of CheA kinase activity. The ability of homogeneous populations of the serine receptor Tsr and the aspartate receptor Tar to stimulate CheA was directly proportional to the ratio of the receptor to total protein in cell membranes up to a fraction of 50%. Membranes containing mixed populations of Tar and Tsr supported an up to 4-fold greater stimulation of CheA than expected on the basis of the contributions of the individual receptors. Peak activity was seen at a Tar:Tsr ratio of 1:4. This synergy was observed only when the two proteins were expressed simultaneously, suggesting that, under our conditions, the fundamental "cooperative receptor unit" is relatively static, even in the absence of CheA and CheW. Finally, we observed that inhibition of receptor-stimulated CheA activity by serine or aspartate required significantly higher concentrations of ligand for membranes containing mixed Tsr and Tar populations than for membranes containing only Tsr (up to 10(2)-fold more serine) or Tar (up to 10(4)-fold more aspartate). Together with recent analyses of the interactions of Tsr and Tar in vivo, our results reveal the emergent properties of mixed receptor populations and emphasize their importance in the integrated signal processing that underlies bacterial chemotaxis.
منابع مشابه
Collaborative signaling by bacterial chemoreceptors.
Motile bacteria seek optimal living habitats by following gradients of attractant and repellent chemicals in their environment. The signaling machinery for these chemotactic behaviors, although assembled from just a few protein components, has extraordinary information-processing capabilities. Escherichia coli, the best-studied model, employs a networked cluster of transmembrane receptors to de...
متن کاملUniversal architecture of bacterial chemoreceptor arrays.
Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic s...
متن کاملBacterial chemoreceptors: high-performance signaling in networked arrays.
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thous...
متن کاملConformational suppression of inter-receptor signaling defects.
Motile bacteria follow gradients of attractant and repellent chemicals with high sensitivity. Their chemoreceptors are physically clustered, which may enable them to function as a cooperative array. Although native chemoreceptor molecules are typically transmembrane homodimers, they appear to associate through their cytoplasmic tips to form trimers of dimers, which may be an important architect...
متن کاملRole of HAMP domains in chemotaxis signaling by bacterial chemoreceptors.
Bacterial chemoreceptors undergo conformational changes in response to variations in the concentration of extracellular ligands. These changes in chemoreceptor structure initiate a series of signaling events that ultimately result in regulation of rotation of the flagellar motor. Here we have used cryo-electron tomography combined with 3D averaging to determine the in situ structure of chemorec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 44 43 شماره
صفحات -
تاریخ انتشار 2005